Ca exemple de rezolvare a problemelor cu vectori

Ca exemple de rezolvare a problemelor cu vectori

Vectorii sunt folosite în multe științe. cum ar fi matematica, fizica, geometrie, și multe alte științe aplicate. În practică, acestea nu pot face operații inutile și pentru a reduce timpul sarcinii. Prin urmare, viitori profesioniști este foarte important să se înțeleagă teoria vectorilor și să învețe să rezolve probleme cu ei.







Material teoretic referitor la - coordonatele vectorului.

Înregistrarea înseamnă că vektorimeet următoarele coordonate: abscisa este 5, ordonata este egală cu -2.

Sarcină. vectori set. Găsiți coordonatele vectorului

Sarcină. Vector. Găsiți coordonatele vectorului

Sarcină. Găsiți coordonatele vectorului, în cazul în care

Lungimea (modulul) al vectorului

Material teoretic privind - lungimea vectorului.

Sarcină. Găsiți lungimea vectorului

Decizie. Folosind formula, obținem:

Sarcină. Găsiți lungimea vectorului

Decizie. Folosind formula, obținem:

Unghiul dintre vectorii

Material teoretic referitor la - unghiul dintre vectori.

Sarcină. Este cunoscut faptul că produsul scalar a doi vectori și lungimea lor. Găsiți unghiul dintre vektoramii.

Decizie. Cosinusul unghiului dorit:

Sarcină. Găsiți unghiul dintre vectorii și







Decizie. Cosinusul unghiului dorit

Sarcină. Găsiți unghiul dintre vectorii și

Decizie. Cosinusul unghiului dorit:

Descompunerea vectorului unitar vectorii axelor de coordonate

Materialul teoretic pe tema - extinderea vectorului vectorilor de bază.

Sarcină. Cunoscând extinderea vectorului asupra vectorilor de bază ale sistemului:, înregistrează coordonatele spațiului vectorial.

Decizie. Coeficienții de versorii este coordonatele vectoriale, astfel încât faptul că am găsit că

Sarcină. Vector set coordonatele sale:. Se înregistrează descompunerea vectorului pe vectori baza axelor de coordonate.

Decizie. coordonatele vectorului - este coeficienții de unitate vectorilor axelor de coordonate în extinderea vectorului pe vectorii de bază ai sistemului, astfel încât extinderea dorită:

Produsul scalar a doi vectori

Materialul teoretic pe tema - produsul scalar al vectorilor.

Sarcină. Calculati produsul scalar al vectorilor, și dacă lungimile lor sunt, respectiv, 2 și 3, iar unghiul dintre ele de 60 °.

Decizie. Deoarece starea ,, a,

Sarcină. Găsiți produsul interior al vectorilor

Decizie. Produsul scalar

produs Vector

Materialul teoretic pe tema - produsul vectorial.

Sarcină. Găsiți produsul vectorial și

Decizie. Compileze și să calculeze determinantul său:

Produsul mixt al vectorilor

Materialul teoretic pe tema - produsul mixt al vectorilor.

Sarcină. Se calculează volumul piramidei formate de vectorii ,,

Decizie. Găsim produsul unui set mixt de vectori, pentru aceasta ar echivala cu un factor determinant pe liniile care le scrie coordonatele vectorilor și: